Author Affiliations
Abstract
School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
The dispersive Fourier transform technique provides feasibility of exploring non-repetitive events and the buildup process in ultrafast lasers. In this paper, we report a new buildup process of dissipative solitons in a simplified mode-locked Yb-doped fiber laser, which includes more complex physics stages such as the Q-switching stage, raised and damped relaxation oscillation stages, noise-like stage, successive soliton explosions stage, and soliton breathing stage. Complete evolution dynamics of noise-like pulse and double pulse are also investigated with dispersive Fourier transform. For the noise-like pulse dynamics process, it will only experience the Q-switching and relaxation oscillation stages. In the case of dissipative soliton and noise-like pulse, the double pulse buildup behavior is manifested as the replication of individual pulses. A weak energy migration occurs between two pulses before reaching steady state. Meanwhile, real-time mutual conversion of the dissipative soliton and noise-like pulse has been experimentally observed, which appears to be instantaneous without extra physical processes. To the best of our knowledge, this is the first report on these physical phenomena observed together in a mode-locked fiber laser. The results further enrich the dynamics of mode-locked fiber lasers and provide potential conditions for obtaining intelligent mode-locked lasers with controllable output.
dispersive Fourier transform dynamics process simplified mode-locked fiber lasers dissipative soliton noise-like pulse double-pulse 
Chinese Optics Letters
2022, 20(8): 081402
洪捐 1,2蒯源 1程鹍 1张泽新 1[ ... ]沈鸿烈 2
作者单位
摘要
1 盐城工学院 机械工程学院,江苏 盐城 224051
2 南京航空航天大学 材料科学与技术学院,江苏 南京 221110
3 深圳市大族光伏装备有限公司,广东 深圳 518103
4 江苏润阳悦达光伏科技有限公司,江苏 盐城 224000
为研究多脉冲激光的热累积效应对硼掺杂纳米硅薄膜熔覆过程的影响,采用单温模型,利用三维有限元方法对激光与硅薄膜的相互作用过程中温度场的分布进行了数值模拟,得到了多脉冲激光耦合情况下的温度场变化规律。仿真结果表明:与单脉冲相比,在多脉冲激光作用下,峰值温度增加了3.2%,熔池尺寸扩大了18.75%,同时热影响区范围也明显增加;激光辐照后,熔覆层表面温度下降,但基体温度仍会继续上升,多脉冲热累积效应为纳米硅薄膜中硼元素扩散提供了有利条件。最后,通过单脉冲及多脉冲激光熔覆实验,分析了熔覆硅薄膜后的熔覆层表面状况的差异,并获得了激光熔覆辅助硼元素扩散的一般规律,为硼掺杂纳米硅薄膜的激光辅助扩散技术在半导体器件中的应用提供了条件。
硼掺杂纳米硅薄膜 激光熔覆 多脉冲激光 温度场 硼扩散 B doped Si nano-film laser cladding multi-pulse laser temperature field B diffusion 
红外与激光工程
2021, 50(10): 20210023
Author Affiliations
Abstract
1 College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
2 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Noise-like pulses having a pedestal of 690 fs and a spike of 59.6 fs were generated in a nonlinear Yb-doped fiber amplification system. The seed source is a mode-locked Yb-doped fiber laser by nonlinear polarization rotation, and dissipative soliton pulses were obtained in it. Then, the dissipative soliton pulses passed through a 7.6 m dispersive fiber to enhance the dispersion and nonlinearity. Further on, the dissipative soliton pulses were launched into a Yb-doped fiber nonlinear amplifier, and stable noise-like pulses with a pedestal of 6.26 ps and a spike of 227 fs were achieved. Finally, by a grating pair, the pedestal and spike of the noise-like pulses were effectively compressed to 690 fs and 59.6 fs, respectively. To the best of our knowledge, this is the shortest pedestal demonstrated in noise-like pulses operating at 1 μm.
fiber laser amplifier compression noise-like pulse 
Chinese Optics Letters
2020, 18(12): 121403
盛庆华 1俞钊 1卢斌 2,*李竹 1,**[ ... ]张泽鑫 1
作者单位
摘要
1 杭州电子科技大学电子信息学院, 浙江 杭州 310018
2 中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
3 中国科学院大学材料与光电研究中心, 北京 100049
针对相位敏感光时域反射计(Φ-OTDR)信号处理复杂、计算量大、实时性要求高的特点,提出一种基于现场可编程门阵列(FPGA)异构加速计算技术的Φ-OTDR实时信号处理系统。对外差探测式Φ-OTDR信号处理流程进行分析与分解,提出基于FPGA的滑动窗数据帧分割、多通道并行快速傅里叶变换(FFT)计算、频域滤波、短时能量求和等一系列加速计算方法。该系统最终实现在40 km光纤传感距离、2 kHz重复频率与1 m采样间隔下的长时间、实时扰动信号解调与显示,并且具有80%的帧重叠率。该FPGA系统作为异构加速器,能够减轻计算机数据处理压力,保证传感系统高重复频率下的运算实时性,为系统可靠性和稳定性提供了有效保障。
光计算 并行处理 异构加速计算 相位敏感光时域反射计 现场可编程门阵列 短时能量 
中国激光
2020, 47(1): 0104002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!